Search results for "quantum chaos"
showing 10 items of 21 documents
Quantum and Classical Statistical Mechanics of the Integrable Models in 1 + 1 Dimensions
1990
In a short but remarkable paper Yang and Yang [1] showed that the free energy of a model system consisting of N bosons on a line with repulsive δ-function interactions was given by a set of coupled integral equations. The Yangs’ chosen model is in fact the repulsive version of the quantum Nonlinear Schrodinger (NLS) model. We have shown that with appropriate extensions and different dispersion relations and phase shifts similar formulae apply to ‘all’ of the integrable models quantum or classical. These models include the sine-Gordon (s-G) and sinh-Gordon (sinh-G) models, the two NLS models (attractive and repulsive), the Landau-Lifshitz (L-L’) model which includes all four previous models,…
Prediction of quantum many-body chaos in protactinium atom
2017
Energy level spectrum of protactinium atom (Pa, Z=91) is simulated with a CI calculation. Levels belonging to the separate manifolds of a given total angular momentum and parity $J^\pi$ exhibit distinct properties of many-body quantum chaos. Moreover, an extremely strong enhancement of small perturbations takes place. As an example, effective three-electron interaction is investigated and found to play a significant role in the system. Chaotic properties of the eigenstates allow one to develop a statistical theory and predict probabilities of different processes in chaotic systems.
Energy-level repulsion by spin-orbit coupling in two-dimensional Rydberg excitons
2018
We study the effects of Rashba spin-orbit coupling on two-dimensional Rydberg exciton systems. Using analytical and numerical arguments we demonstrate that this coupling considerably modifies the wave functions and leads to a level repulsion that results in a deviation from the Poissonian statistics of the adjacent level distance distribution. This signifies the crossover to non-integrability of the system and hints on the possibility of quantum chaos emerging. Such a behavior strongly differs from the classical realization, where spin-orbit coupling produces highly entangled, chaotic electron trajectories in an exciton. We also calculate the oscillator strengths and show that randomization…
Intrinsic quantum chaos and spectral fluctuations within the protactinium atom
2018
Floquet spectrum for two-level systems in quasiperiodic time-dependent fields
1992
We study the time evolution ofN-level quantum systems under quasiperiodic time-dependent perturbations. The problem is formulated in terms of the spectral properties of a quasienergy operator defined in an enlarged Hilbert space, or equivalently of a generalized Floquet operator. We discuss criteria for the appearance of pure point as well as continuous spectrum, corresponding respectively to stable quasiperiodic dynamics and to unstable chaotic behavior. We discuss two types of mechanisms that lead to instability. The first one is due to near resonances, while the second one is of topological nature and can be present for arbitrary ratios between the frequencies of the perturbation. We tre…
Nonlinearity and Disorder in the Statistical Mechanics of Integrable Systems
1992
Attention is drawn to a theory of the statistical mechanics (SM) of the integrable models in 1+1 dimension — a theory of ‘soliton statistical mechanics’ classical and quantum [1–17]. This SM provides a generic example of integrable nonlinearity interacting with disorder. In the generic classical examples, such as the classical SM of the sine-Gordon model, phonons provide disorder in which sit coherent structures — the kink-like solitons. But these solitons are dressed by the disorder, in equilibrium, while the breather-like solitons break up to form the disordered structures which are the phonons in thermal equilibrium. On the other hand quantum solitons, dressed by both the vacuum and fini…
Quantum Solitons on Quantum Chaos: Coherent Structures, Anyons, and Statistical Mechanics
1991
This paper is concerned with the exact evaluation of functional integrals for the partition function Z (free energy F = -β -1 ln Z, β -1 = temperature) for integrable models like the quantum and classical sine-Gordon (s-G) models in 1+1 dimensions.1–12 These models have wide applications in physics and are generic (and important) in that sense. The classical s-G model in 1+1 dimensions $${\phi _{xx}} - {\phi _{tt}} = {m^2}\sin \phi$$ (1) (m > 0 is a “mass”) has soliton (kink, anti-kink and breather) solutions. In Refs 1–12 we have reported a general theory of ‘soliton statistical mechanics’ (soliton SM) in which the particle description can be seen in terms of ‘solitons’ and ‘phonons’. The …
Solitons ofq-deformed quantum lattices and the quantum soliton
2001
We use the classical N-soliton solution of a q-deformed lattice, the Maxwell-Bloch (MB) lattice, which we reported recently (Rybin A V, Varzugin G G, Timonen J and Bullough R K Year 2001 J. Phys. A: Math. Gen. 34 157) in order, ultimately, to fully comprehend the `quantum soliton'. This object may be the source of a new information technology (Abram I 1999 Quantum solitons Phys. World 21-4). We suggested in Rybin et al 2001 that a natural quantum mechanical matrix element of the q-deformed quantum MB lattice becomes in a suitable limit the classical 1-soliton solution of the classical q-deformed MB lattice explicitly derived by a variant of the Darboux-Backlund method. The classical q-defor…
Quantum and classical integrability: new approaches in statistical mechanics
1991
Abstract The present status of the statistical mechanics (SM), quantum and classical, of integrable models is reviewed by reporting new results for their partition functions Z obtained for anyon type models in one space and one time (1 + 1) dimensions. The methods of functional integration developed already are extended further. Bose-Fermi equivalence and anyon descriptions are natural parts of the quantum theory and the anyon phase is quantised. The classical integrability is exploited throughout and both classical and quantum integrability theory are reviewed this way, and related to underlying algebraic structures - notably the Hopf algebras (“quantum groups”). A new “ q -boson” lattice …
Soliton Statistical Mechanics: Statistical Mechanics of the Quantum and Classical Integrable Models
1988
It is shown how the Bethe Ansatz (BA) analysis for the quantum statistical mechanics of the Nonlinear Schrodinger Model generalises to the other quantum integrable models and to the classical statistical mechanics of the classical integrable models. The bose-fermi equivalence of these models plays a fundamental role even at classical level. Two methods for calculating the quantum or classical free energies are developed: one generalises the BA method the other uses functional integral methods. The familiar classical action-angle variables of the integrable models developed for the real line R are used throughout, but the crucial importance of periodic boundary conditions is recognized and t…